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Our Research
● The majority of QKD protocols require “quantum 

hardware”
– Hardware capable of manipulating quantum resources in arbitrary 

ways
– Can be very expensive, sensitive to noise

● Can we construct new protocols which require less 
quantum resources?
– Cheaper
– What if hardware breaks down?
– What makes quantum communication secure?

● If so, how do we analyze their security and how do 
they compare?
– Standard tools typically fail when analyzing these light-weight 

protocols
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Our Research

● We construct new protocols showing only very 
minimal quantum capabilities are required

● Also, we develop new proof methods to bound 
the quantum min entropy as standard 
techniques often fail in these scenarios
– New Entropic Uncertainty Relations
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New Protocols
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● If you only use one publicly known basis, no 
different than an (expensive) classical protocol:
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Semi-Quantum Key Distribution
● Semi-quantum QKD

– Introduced by Boyer et al. in 2007 PRL 99:140501

– Survey: H. Iqbal, and W. O. Krawec. "Semi-quantum cryptography." Quantum Information Processing 19, no. 3 (2020): 1-
52.

– Analyzed in W.O. Krawec. Quantum Information & Computation 17 (3&4) pp. 209-241 arXiv:1608.07728

– Improved in O. Amer and W.O. Krawec. Semi-Quantum Key Distribution with High Quantum Noise Tolerance. Physical 
Review A 100 (2) 022319
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Semi-Quantum Key Distribution
● Semi-quantum QKD

– It is possible to perform even fewer measurements+states
(W.O. Krawec and E. Geiss. Semi-Quantum Key Distribution with Limited Measurement Capabilities Proc. International 
Symposium on Information Theory and Its Applications (ISITA), Singapore, 2018)

arXiv:1710.05076
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Semi-Quantum Key Distribution
● Semi-quantum QKD

– It is possible to perform even fewer measurements+states
(W.O. Krawec and E. Geiss. Semi-Quantum Key Distribution with Limited Measurement Capabilities Proc. International 
Symposium on Information Theory and Its Applications (ISITA), Singapore, 2018)

– As secure as the original only if you compensate with classical 
communication!
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SQKD
● But can both parties be restricted?
● Yes!
● Mediated Semi-Quantum Key Distribution
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Krawec, W. O. (2015). Mediated semiquantum key distribution. Physical Review A, 91(3), 032323.
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SQKD
● But can both parties be restricted?
● Yes!
● Mediated Semi-Quantum Key Distribution
● Assumes the server is adversarial
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Krawec, W. O. (2015). Mediated semiquantum key distribution. Physical Review A, 91(3), 032323.
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SQKD
● But can both parties be restricted?
● Yes!
● Mediated Semi-Quantum Key Distribution
● Assumes the server is adversarial
● Recent work improves this:

Adversarial
Quantum

Server
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F. Massa, P. Yadav, A. Moqanaki, W. O. Krawec, P. Mateus, N. Paunkovic, A. Souto, and P. Walther. 
Experimental Quantum Cryptography With Classical Users. pre-print available online: arXiv:1908.01780
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Our Protocol

● We've shown that it is possible to 
experimentally implement these “limited 
resource” protocols

● We can show that the most important item is 
the Server's Equipment (Detector and 
Source)

● A and B can use much cheaper, poorly 
performing devices
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● So, you can imagine the complex, expensive, 
devices being pushed to the servers while 
users only need really cheap poorly performing 
detectors
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● Ability to use two servers
also provides unique
opportunities
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QCIT IEEE GlobeCom
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Security



  

Entropic Uncertainty
● Entropic Uncertainty Relations, informally, characterize our 

uncertainty of a quantum system undergoing different 
measurements

● Quantum Sampling: a framework introduced by Bouman and  
Fehr to translate classical sampling strategies to quantum 
sampling

● We recently showed how this framework can be used to 
discover novel entropic uncertainty relations
– Our relations are easier to use in applications and often lead 

to better security results for limited-resource protocols

M

N

Very certain

Puzzled



  

Entropic Uncertainty

Biased Measurements High Dimensional Systems
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Future Work
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Closing Remarks

● We've shown, through this and other projects, 
that you really don't need a lot of “quantum” to 
get an advantage over classical.

● Fundamental questions of “how quantum” 
should a protocol be?

● New security techniques applicable to other 
(fully) quantum protocols

● Interesting connections showing how classical 
resources can overcome quantum limitations
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Future Work
● Improving key-rates for biased measurements

– Our current proof requires an assumption on the source, can this be 
removed?

● Looking at network scenarios with multiple servers and clients

– What new protocols can be developed?
– How can multi-servers be used effectively?

● Designing new (S)QKD protocols

– What are the theoretical limits of weakly-quantum devices for 
cryptography?

– Can new proof techniques be developed?
● Alternative cryptographic protocols beyond QKD

– Certified deletion
– Quantum Public Keys
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Thank you! Questions?
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BB84: the idea

BobAlice Eve

0 == { |0>,  |+> }
1 == { |1>,  |->  }

|->

Key-bit = 1
Basis   = X

0 == { |0>,  |+> }
1 == { |1>,  |->  }
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BobAlice Eve
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BobAlice Eve

0 == { |0>,  |+> }
1 == { |1>,  |->  }

Key-bit = 1
Basis   = X

???

|+>

Key-bit = 0
Basis   = X

Key-guess = 0
Basis = X!
Basis-Guess = Z

Any attack induces errors in the quantum 
channel which A and B may detect!

Goal: Bound E's information gain as a 
function of this error rate.

0 == { |0>,  |+> }
1 == { |1>,  |->  }
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