Quantum Cryptography

Walter O. Krawec

University of Connecticut, Storrs CT.

walterkrawec.org
walter.krawec@uconn.edu

Our Research

- The majority of QKD protocols require "quantum hardware"
 - Hardware capable of manipulating quantum resources in arbitrary ways
 - Can be very expensive, sensitive to noise
- Can we construct new protocols which require less quantum resources?
 - Cheaper
 - What if hardware breaks down?
 - What makes quantum communication secure?
- If so, how do we analyze their security and how do they compare?
 - Standard tools typically fail when analyzing these light-weight protocols

Our Research

- We construct new protocols showing only **very minimal** quantum capabilities are required
- Also, we develop new proof methods to bound the quantum min entropy as standard techniques often fail in these scenarios
 - New Entropic Uncertainty Relations

New Protocols

• If you only use one publicly known basis, no different than an (expensive) classical protocol:

= Source Device

= Measurement Device

New Protocols

• Typical QKD Protocol:

= Measurement Device

New Protocols

• Typical QKD Protocol:

= Measurement Device

Semi-Quantum Key Distribution

Semi-quantum QKD

- Introduced by Boyer et al. in 2007 PRL 99:140501
- Survey: H. Iqbal, and W. O. Krawec. "Semi-quantum cryptography." Quantum Information Processing 19, no. 3 (2020): 1-52.
- Analyzed in W.O. Krawec. Quantum Information & Computation 17 (3&4) pp. 209-241 arXiv:1608.07728
- Improved in O. Amer and W.O. Krawec. Semi-Quantum Key Distribution with High Quantum Noise Tolerance. Physical Review A 100 (2) 022319

Semi-Quantum Key Distribution

- Semi-quantum QKD
 - It is possible to perform even fewer measurements+states (W.O. Krawec and E. Geiss. Semi-Quantum Key Distribution with Limited Measurement Capabilities Proc. International Symposium on Information Theory and Its Applications (ISITA), Singapore, 2018)

Semi-Quantum Key Distribution

- Semi-quantum QKD
 - It is possible to perform even fewer measurements+states (W.O. Krawec and E. Geiss. Semi-Quantum Key Distribution with Limited Measurement Capabilities Proc. International Symposium on Information Theory and Its Applications (ISITA), Singapore, 2018)
 - As secure as the original only if you compensate with classical communication!

SQKD

- But can both parties be restricted?
- Yes!
- Mediated Semi-Quantum Key Distribution

Krawec, W. O. (2015). Mediated semiquantum key distribution. Physical Review A, 91(3), 032323.

SQKD

- But can both parties be restricted?
- Yes!
- Mediated Semi-Quantum Key Distribution
- Assumes the server is adversarial

Krawec, W. O. (2015). Mediated semiquantum key distribution. Physical Review A, 91(3), 032323.

SQKD

- But can both parties be restricted?
- Yes!
- Mediated Semi-Quantum Key Distribution
- Assumes the server is adversarial
- Recent work improves this:

F. Massa, P. Yadav, A. Moqanaki, W. O. Krawec, P. Mateus, N. Paunkovic, A. Souto, and P. Walther. **Experimental Quantum Cryptography With Classical Users.** pre-print available online: arXiv:1908.01780

Our Protocol

- We've shown that it is possible to experimentally implement these "limited resource" protocols
- We can show that the most important item is the Server's Equipment (Detector and Source)
- A and B can use much cheaper, poorly performing devices

 So, you can imagine the complex, expensive, devices being pushed to the servers while users only need really cheap poorly performing detectors

Security

Entropic Uncertainty

 Entropic Uncertainty Relations, informally, characterize our uncertainty of a quantum system undergoing different measurements

```
H(M)_{\rho} + H(N)_{\rho} \ge \gamma
```


- Quantum Sampling: a framework introduced by Bouman and Fehr to translate classical sampling strategies to quantum sampling
- We recently showed how this framework can be used to discover novel entropic uncertainty relations
 - Our relations are easier to use in applications and often lead to better security results for limited-resource protocols

Entropic Uncertainty

Future Work

Closing Remarks

- We've shown, through this and other projects, that you really don't need a lot of "quantum" to get an advantage over classical.
- Fundamental questions of "how quantum" should a protocol be?
- New security techniques applicable to other (fully) quantum protocols
- Interesting connections showing how classical resources can overcome quantum limitations

Future Work

- Improving key-rates for biased measurements
 - Our current proof requires an assumption on the source, can this be removed?
- Looking at network scenarios with multiple servers and clients
 - What new protocols can be developed?
 - How can multi-servers be used effectively?
- Designing new (S)QKD protocols
 - What are the theoretical limits of weakly-quantum devices for cryptography?
 - Can new proof techniques be developed?
- Alternative cryptographic protocols beyond QKD
 - Certified deletion
 - Quantum Public Keys

Thank you! Questions?

BB84: the idea $\begin{bmatrix} 0 == \{ |0>, |+> \} \\ 1 == \{ |1>, |-> \} \end{bmatrix}$

Alice

Eve

Bob

Key-bit = 1Basis = X

0 == { |0>, |+> } 1 == { |1>, |-> }

Bob

Alice

Key-bit = 1 Basis = X

Eve

Key-guess = ? Basis = ??? Basis-Guess = Z

$$\begin{array}{l} 0 == \{ \ |0>, \ |+> \} \\ 1 == \{ \ |1>, \ |-> \ \} \end{array}$$

Alice

Key-bit = 1 Basis = X

Eve

Key-guess = 0 Basis = ??? Basis-Guess = Z

Bob

Alice

Key-bit = 1 Basis = X Eve

Key-guess = 0 Basis = ??? Basis-Guess = Z

Key-bit	=	?
Basis	=	?

Bob

Any attack induces errors in the quantum channel which A and B may detect!

Goal: Bound E's information gain as a function of this error rate.

